Hybrid Simulated Annealing and Random Forest for Traffic Density Prediction in VANETs

dc.contributor.advisorWijanarko, Heru
dc.contributor.authorHisan, Vira Khairatul Hisan
dc.date.accessioned2025-05-23T08:34:27Z
dc.date.issued2025-02-06
dc.description.abstractThe study addresses the issue of predicting traffic density in Vehicular Ad-hoc Networks (VANETs), where dynamic and unexpected traffic patterns limit accurate forecasting. Recent models frequently encounter challenges with accuracy caused by overfitting or complications in handling real-time data. The study introduces a hybrid model that combines Random Forest with Simulated Annealing, optimising the model’s parameters to mitigate overfitting and improve reliability. The research follows several steps: first, data from a VANETs dataset was collected and preprocessed, and then several standard machine learning models, like Linear Regression, Decision Trees, Random Forest, Support Vector Regression, and K-Nearest Neighbors, were tested. The Random Forest model showed the best performance metrics and was optimized using Simulated Annealing. The hybrid Simulated Annealing-Random Forest model significantly improved accuracy, outperforming traditional models.
dc.identifier.citationIEEE
dc.identifier.isbn979-8-3503-6808-6
dc.identifier.kodeprodiKODEPRODI21312#Teknik Mekatronika
dc.identifier.nidnNIDN0010048604
dc.identifier.nimNIM4212231002
dc.identifier.urihttps://repository.polibatam.ac.id/handle/PL029/4015
dc.language.isoen_US
dc.publisherPoliteknik Negeri Batam
dc.subjectmachine learning optimization
dc.subjectrandom forest
dc.subjectsimulated annealing
dc.subjecttraffic density prediction
dc.subjectvehicular ad-hoc networks
dc.titleHybrid Simulated Annealing and Random Forest for Traffic Density Prediction in VANETs
dc.typeArticle

Files

Original bundle

Now showing 1 - 3 of 3
Repository Politeknik Negeri Batam
Name:
Lembar Pengesahan_Vira Khairatul Hisan.pdf
Size:
70.88 KB
Format:
Adobe Portable Document Format
Repository Politeknik Negeri Batam
Name:
Pernyataan Borang Publikasi_Vira Khairatul Hisan (ttd HW).pdf
Size:
141.96 KB
Format:
Adobe Portable Document Format
Repository Politeknik Negeri Batam
Name:
4212231002_Vira Khairatul Hisan_Buku Laporan.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Repository Politeknik Negeri Batam
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: