Hybrid Simulated Annealing and Random Forest for Traffic Density Prediction in VANETs

dc.contributor.advisorWijanarko, Heru
dc.contributor.authorFajri, Wahidil
dc.date.accessioned2025-09-12T08:09:22Z
dc.date.issued2025-02-06
dc.description.abstractThe study addresses the issue of predicting traffic density in Vehicular Ad-hoc Networks (VANETs), where dynamic and unexpected traffic patterns limit accurate forecasting. Recent models frequently encounter challenges with accuracy caused by overfitting or complications in handling real-time data. The study introduces a hybrid model that combines Random Forest with Simulated Annealing, optimising the model’s parameters to mitigate overfitting and improve reliability. The research follows several steps: first, data from a VANETs dataset was collected and preprocessed, and then several standard machine learning models, like Linear Regression, Decision Trees, Random Forest, Support Vector Regression, and K-Nearest Neighbors, were tested. The Random Forest model showed the best performance metrics and was optimized using Simulated Annealing. The hybrid Simulated Annealing-Random Forest model significantly improved accuracy, outperforming traditional models.
dc.identifier.citationIEEE
dc.identifier.isbn979-8-3503-6808-6
dc.identifier.issn2689-8004
dc.identifier.kodeprodiKODEPRODI21312#Teknik Mekatronika
dc.identifier.nidnNIDN0010048604
dc.identifier.nimNIM4212231004
dc.identifier.urihttps://repository.polibatam.ac.id/handle/PL029/4358
dc.language.isoen_US
dc.publisherIEEE
dc.subjectAdaptation models
dc.subjectAccuracy
dc.subjectComputational modeling
dc.subjectVehicular ad hoc networks
dc.subjectSimulated annealing
dc.subjectPredictive models
dc.subjectReal-time systems
dc.subjectVehicle dynamics
dc.subjectRandom forests
dc.subjectOverfitting
dc.subjectmachine learning optimization
dc.subjectrandom forest
dc.subjectsimulated annealing
dc.subjecttraffic density prediction
dc.titleHybrid Simulated Annealing and Random Forest for Traffic Density Prediction in VANETs
dc.typeArticle

Files

Original bundle

Now showing 1 - 3 of 3
Repository Politeknik Negeri Batam
Name:
4212231004_Laporan Tugas Akhir.pdf
Size:
4.7 MB
Format:
Adobe Portable Document Format
Description:
Full page articel
Repository Politeknik Negeri Batam
Name:
4212231004_Lembar Pengesahan.pdf
Size:
522.6 KB
Format:
Adobe Portable Document Format
Description:
Pengesahan
Repository Politeknik Negeri Batam
Name:
Borang_Publikasi.pdf
Size:
592.21 KB
Format:
Adobe Portable Document Format
Description:
Borang publikasi

License bundle

Now showing 1 - 1 of 1
Repository Politeknik Negeri Batam
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: