Hybrid Simulated Annealing and Random Forest for Traffic Density Prediction in VANETs
dc.contributor.advisor | Wijanarko, Heru | |
dc.contributor.author | Fajri, Wahidil | |
dc.date.accessioned | 2025-09-12T08:09:22Z | |
dc.date.issued | 2025-02-06 | |
dc.description.abstract | The study addresses the issue of predicting traffic density in Vehicular Ad-hoc Networks (VANETs), where dynamic and unexpected traffic patterns limit accurate forecasting. Recent models frequently encounter challenges with accuracy caused by overfitting or complications in handling real-time data. The study introduces a hybrid model that combines Random Forest with Simulated Annealing, optimising the model’s parameters to mitigate overfitting and improve reliability. The research follows several steps: first, data from a VANETs dataset was collected and preprocessed, and then several standard machine learning models, like Linear Regression, Decision Trees, Random Forest, Support Vector Regression, and K-Nearest Neighbors, were tested. The Random Forest model showed the best performance metrics and was optimized using Simulated Annealing. The hybrid Simulated Annealing-Random Forest model significantly improved accuracy, outperforming traditional models. | |
dc.identifier.citation | IEEE | |
dc.identifier.isbn | 979-8-3503-6808-6 | |
dc.identifier.issn | 2689-8004 | |
dc.identifier.kodeprodi | KODEPRODI21312#Teknik Mekatronika | |
dc.identifier.nidn | NIDN0010048604 | |
dc.identifier.nim | NIM4212231004 | |
dc.identifier.uri | https://repository.polibatam.ac.id/handle/PL029/4358 | |
dc.language.iso | en_US | |
dc.publisher | IEEE | |
dc.subject | Adaptation models | |
dc.subject | Accuracy | |
dc.subject | Computational modeling | |
dc.subject | Vehicular ad hoc networks | |
dc.subject | Simulated annealing | |
dc.subject | Predictive models | |
dc.subject | Real-time systems | |
dc.subject | Vehicle dynamics | |
dc.subject | Random forests | |
dc.subject | Overfitting | |
dc.subject | machine learning optimization | |
dc.subject | random forest | |
dc.subject | simulated annealing | |
dc.subject | traffic density prediction | |
dc.title | Hybrid Simulated Annealing and Random Forest for Traffic Density Prediction in VANETs | |
dc.type | Article |
Files
Original bundle
1 - 3 of 3
Repository Politeknik Negeri Batam
- Name:
- 4212231004_Laporan Tugas Akhir.pdf
- Size:
- 4.7 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full page articel
Repository Politeknik Negeri Batam
- Name:
- 4212231004_Lembar Pengesahan.pdf
- Size:
- 522.6 KB
- Format:
- Adobe Portable Document Format
- Description:
- Pengesahan
Repository Politeknik Negeri Batam
- Name:
- Borang_Publikasi.pdf
- Size:
- 592.21 KB
- Format:
- Adobe Portable Document Format
- Description:
- Borang publikasi
License bundle
1 - 1 of 1
Repository Politeknik Negeri Batam
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: