D3 Teknik Mesin

Permanent URI for this collectionhttps://repository.polibatam.ac.id/handle/PL029/1760

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Pengaruh Variasi Kecepatan Putar Spindel Mesin Bubut Terhadap Hasil Penguliran Dengan Spesimen Aluminium 6061 dan S45C Menggunakan Holder Snei to Tailstock
    (Politeknik Negeri Batam, 2025-07-23) Putra, Akri Ramadhan; Saputra, Ihsan; Mutiarani
    Pemahaman mahasiswa mengenai proses pembuatan ulir luar menggunakan mesin bubut konvensional dan handle snei masih menghadapi tantangan dalam praktik lapangan. Kendala ini muncul akibat terbatasnya waktu penggunaan mesin serta sistem bergiliran antar pengguna, yang seringkali mengakibatkan kerusakan atau ketidaksesuaian standar pada ulir yang dihasilkan. Salah satu faktor utama penyebab kerusakan tersebut saat menggunakan handle snei adalah kurangnya perhatian terhadap ketegaklurusan benda kerja ketika dijepit di ragum. Penelitian ini bertujuan untuk menentukan kecepatan putar spindle yang optimal bagi proses penguliran diameter luar dengan holder snei to tailstock pada mesin bubut konvensional, menggunakan material S45C dan Aluminium 6061 sebagai spesimen serta dimensi ulir M 8 × 1.25 mm. Metode penelitian yang digunakan adalah eksperimental kuantitatif, dilaksanakan di PT. X. Batasan penelitian meliputi dua jenis material berdiameter 30 mm dan panjang 60 mm, dengan panjang ulir mencapai 35 mm. Penelitian mencakup enam variasi putaran spindle untuk material S45C (50 RPM, 130 RPM, 180 RPM, 260 RPM, 360 RPM, dan 560 RPM) serta Aluminium 6061 (180 RPM, 260 RPM, 360 R PM, 560 RPM, 800 RPM, 1120 RPM). Data yang dikumpulkan mencakup dimensi produk akhir,jangka waktu pengerjaan, hasil visual dari ulir yang dihasilkan, pengujian fungsi melalui pemasangan ulir ke mur M 8 ×1 .25 mm, dengan media penguji berupa lembaran plat baja setebal 15 mm serta dibandingkan dengan part standar (cap screw M 8 ×1.25 mm). Hasil analisis menunjukkan bahwa untuk spesimen S45C, kecepatan putar spindle optimum berada pada angka 50 RPM sedangkan untuk Aluminium 6061 180 RPM hingga 260 RPM. Hasil studi ini diharapkan dapat menjadi acuan dalam menetapkan parameter kecepatan putar ideal guna menghasilkan ulir luar yan baik secara tampilan maupun fungsional.
  • Item
    PERBANDINGAN KEKASARAN PERMUKAAN AISI 4140 DAN MILD STEEL 440 UNTUK PIVOT FLANGE
    (Politeknik Negeri Batam, 2025-01-13) ROZAQ, ARIEFIN ABDUL; Siregar, James; Fadilah, Nurul
    Grinding process is a process of reducing material to be a product. Feeding is carried out by a grinding disc which rotates against the workpiece on the table which moves left or right (in the x-axix direction). This feeding process will result in differences in the surface roughness of the workpiece. Surface Roughness is the arithmetic mean deviation from the profile mean line. Therefore, to obtain a quality product in the form of a high level of precision and good surface roughness, it needs to be supported by an appropriated machining process. Evaluation of surface roughness is very important for many basic problems, for example friction in materials. This study aims to compare the surface roughness of AISI 4140 and Mild Steel SS400 after going through the same grinding process. Data is obtained by measuring the level of workpiece roughness using the Surface Roughness Tester. This comparison aims to find out which material is better for making pivot flange. The pivot flange is the link between the shaft and the flange which is use as a fulcrum. The Surface Roughness tester machine shows 3 parameters of roughness, namely the arithmetic average roughness (Ra), the quadratic average roughness (Rq), and the total average roughness (Rz). The result show that the Mild Steel SS400 material has a lower average roughness, where the Ra is 30.4 μm. A finer material is needed to make a pivot flange because it can be reduce the friction and wear of the material. Keywords: Surface roughness, grinding process, AISI 4140 and Mild Steel SS400.
  • Item
    Cladding pada Flange dengan Menggunakan Inconel 625 dan Inconel 825
    (2024-08-12) Raharjo, Hernano; ; Havwini,Tian
    Cladding merupakan proses pelapisan logam dengan logam lainnya dengan cara pengerolan panas atau pengelasan. Proses cladding memiliki keuntungan yaitu dapat meningkatkan ketahanan korosi, ketahanan aus, atau ketahanan panas. Proses Weld Overlay Cladding dapat digunakan untuk menghambat laju korosi dengan menambahkan lapisan logam yang bersifat tahan karat pada permukaan baja karbon dan menambah kekuatan pada baja. Minyak dan gas adalah salah satu sumber daya alam penghasil energi yang paling dibutuhkan dalam kehidupan manusia pada saat ini. Minyak dan gas berperan penting sebagai sumber energi utama di seluruh dunia. PT. Cladtek Bi-Metal Manufacturing ialah perusahaan yang bergerak di bidang jasa industri untuk beberapa pekerjaan mengenai material logam, khususnya proses Weld Overlay dan Lining pada pipa baja karbon untuk keperluan industri. Tujuan pengujian ini adalah untuk mendapatkan perbandingan dari Inconel 625 dengan Inconel 825 pada saat proses cladding pada flange. Material uji 1 dilakukan proses cladding dengan menggunakan Inconel 625 dengan durasi waktu pengelasan selama 360 menit dengan 3 lapisan pengelasan, material uji 2 dilakukan proses cladding dengan menggunakan Inconel 825 dengan durasi waktu pengelasan selama 240-270 menit dengan 3 lapisan pengelasan. Inconel 625 memiliki kekuatan tarik 827 MPa lebih tinggi dibandingkan dengan Inconel 825 yang memiliki kekuatan tarik 586 MPa dan Inconel 625 sangat tahan terhadap korosi.
  • Item
    Simulasi Pembebanan Statik pada Stand Papan Tulis Menggunakan Software Solidworks 2023
    (Politeknik Negeri Batam, 2024-07-04) Prathama, Fiqri Ikhsan; Restu, Fedia; Fyona, Annisa
    In this research, a static loading simulation was carried out on a whiteboard stand with the aim of testing the strength of the stand when exposed to static loads and to determine the value of von Mises stress, displacement, and factor of safety on a whiteboard stand designed using Solidworks 2023 software. The simulation was carried out on galvanized steel material with dimensions of 40 x 40 x 1.33 mm. From this research, it was found that the maximum von Mises stress value on a whiteboard stand without support was 7.835 N/mm2 (MPA), which occurred at the end of the hollow rod supporting the whiteboard, and the maximum stress was 5.425 N/mm2 (MPA) on a whiteboard stand with support. occurs on the lower side of the hollow support rod. The minimum stress obtained from the two models is 0 N/mm2 (MPA), which occurs at the end of the lower leg of the hollow rod. The maximum displacement value on a whiteboard stand without support is 0.024 mm, and on a whiteboard stand with support it is 0.013 mm. Both occur at the top of the hollow rod, and the hollow rod experiences displacement upwards. The minimum displacement value for a whiteboard stand without support is -0.198 mm, and for a whiteboard stand with support, it is -0.090 mm, both of which occur in the lower hollow rod that supports the whiteboard. The hollow rod experiences downward displacement. Calculating the factor of safety value obtained on a blackboard stand without support, the value was 26.029, and on the whiteboard stand with support, the value was 37.593. So it can be concluded that adding support to the bottom support rod of the whiteboard can provide quite significant supporting strength.
  • Item
    STUDI KASUS NITROGEN GENERATION SYSTEM INDICATOR BLUE LIGHT MENYALA (DEGARADED) KETIKA DI GROUND PADA PESAWAT BOEING 737-900ER
    (2024-07-09) Misgiyanto; Dzulfikar, Mohamad
    Reflecting on several aircraft accidents which experienced explosions in the fuel tank, a system was installed, namely the Nitrogen Generation System (NGS), which relies on nitrogen gas (N2) to neutralize oxygen gas (02) in the fuel tank. The Nitrogen Generation System (NGS) has several components installed in the left air conditioning compartment bay on Boeing 737-800/900ER aircraft. In this writing, we use observation methods, analysis methods, and literature methods. Regarding the problem of the Nitrogen Generation System Indicator Light Turning Blue (Degraded) When on Ground, it is necessary to identify the system and carry out a repair or troubleshooting process. What most often occurs is due to damage to the Air Separation Module (ASM), but it does not rule out the possibility of other components having problems. For example, in the case that I analyzed, it was caused by a system failure in the over-temperature shutoff valve (OTSOV) component which ultimately resulted in a part being replaced, so appropriate handling of this problem is needed which aims to prevent the occurrence of several conditions that could endanger passengers and the aircraft.